Deterministic Langevin Optimization

SIAM OP23

Jamie Sullivan (work w/ Uroš Seljak)

UC Berkeley

BERKELEY CENTER for COSMOLOGICAL PHYSICS

Active Learning

Strategy for expensive functions:

- 1. Think very carefully about choosing a domain point
- 2. Evaluate the function at the top candidate point
- 3. Build upon success or learn from mistakes

Bayesian Optimization

Bayesian optimization (BO) is a strategy for global optimization of expensive black-box functions

Local methods can fail on rugged or multi-modal objectives

Spaces of moderate dimension (*d*<100)

Bayesian Optimization

- 1. <u>Surrogate model</u>: $s(\theta)$ approximates the function 2. <u>Acquisition function (AF)</u>: weights exploration vs exploitation to select future points
- Gaussian Processes (GPs) are non-parametric interpolators with uncertainty attached
- Typically $s(\theta)$ is a Gaussian Process mean, and the AFuses GP uncertainty

GP comes with a "natural" uncertainty for the AF

We instead use a density estimate for uncertainty inspired by the deterministic Langevin equation:

$$\theta_{t+1} = \theta_t + v\epsilon = \theta_t + \frac{d}{d\theta} [\beta f(\theta_t) + V_t(\theta_t)(t)]\epsilon$$

GP comes with a "natural" uncertainty for the AF

We instead use a density estimate for uncertainty inspired by the deterministic Langevin equation:

stochastic update

$$\theta_{t+1} = \theta_t + v\epsilon = \theta_t + \frac{d}{d\theta} [\beta f(\theta_t) + V_t(\theta_t)(t)]\epsilon$$
parameter vector
"particle motion"
Write velocity as combination of lo

Write velocity as the gradient of the combination of log target and density

GP comes with a "natural" uncertainty for the AF

We instead use a density estimate for uncertainty inspired by the deterministic Langevin equation:

$$\begin{aligned} \theta_{t+1} &= \theta_t + v\epsilon = \theta_t + \frac{d}{d\theta} [\beta f(\theta_t) + V_t(\theta_t)(t)]\epsilon \\ \theta_{t+1} &= \arg \max_{\theta} [\beta f(\theta) + V_t(\theta)] = \arg \max_{\theta} \ln \frac{\exp(\beta f(\theta))}{q_t(\theta)} \end{aligned}$$

Formulate as optimization problem!

$$q(\theta) \equiv e^{-V(\theta)}$$

GP comes with a "natural" uncertainty for the AF

We instead use a density estimate for uncertainty inspired by the deterministic Langevin equation:

$$\theta_{t+1} = \theta_t + v\epsilon = \theta_t + \frac{d}{d\theta} [\beta f(\theta_t) + V_t(\theta_t)(t)]\epsilon$$

$$\theta_{t+1} = \arg \max_{\theta} [\beta f(\theta) + V_t(\theta)] = \arg \max_{\theta} \ln \frac{\exp(\beta f(\theta))\epsilon}{q_t(\theta)}$$

$$target \cdot i \quad terms to the stimate interval of the stimate in$$

Normalizing Flows

NFs give a bijective map from a base distribution to a target (Rezende & Mohamed 15, Papamarkios++19)

Fast sampling and evaluation of approximate density

DLO - almost Bayesian Optimization

Schematic Algorithm

The flow allows us to search for new points in *latent space*

Algorithm 1: Schematic Version

```
Evaluate f(\theta_0) at initial points.
Assign call budget N, which sets the
annealing levels N_{\beta}.
for i < N_\beta do
    Fit NF q_{uw} to obtain unweighted sample density.
    Fit surrogate q_w to annealed objective values \beta \log p(\theta).
   Locally maximize the acquisition function AF(\theta)
    Evaluate f(\theta_{i+1}) and update \beta.
end
```

DLO Results: Test Functions

Rastrigin & Rosenbrock objectives in 10d

DLO Results: Test Functions

Rastrigin & Rosenbrock objectives in 10d

DLO Results: Applied example

Cosmology application: Luminous Red Galaxy clustering

11-d posterior Inference problem

DLO-G -20 Turbo random -25 objective -30--32--40 20 40 60 80 120 140 160 100 180 evaluations

Also competitive for ML hyperparameter optimization

Choice of Surrogate

For lower-*d*, use GP, but DLO works with NNs

Runtime for GP becomes intractable with d

NN instead can save wall-clock time:

d	2	5	10	20	50
Evaluation:					
DLO-GP	0.02	0.03	0.07	0.15	6.07
DLO-NN	0.02	0.02	0.04	0.10	0.53
Fitting:					
DLO-GP	0.17	0.26	0.44	1.71	46.65
DLO-NN	0.03	0.04	0.06	0.20	2.84

DLO Summary

NF density can replace GP uncertainty

Success on moderately high-dimensional targets

Other surrogates scale to higher *d* / larger datasets than GP

Extra Slides

Acquisition Functions

DLO

Upper Confidence Bound

Expected Improvement

Thompson Sampling

DLO provides a good starting point for sampling

100 importance-weighted samples is already qualitatively correct in 10d

Corrected surrogate steps perform even better on harder problems

Full Algorithm

Algorithm 1 Deterministic Langevin Optimization

- 1: Evaluate $f(\theta_1), ..., f(\theta_{N_I})$ at N_I initial points; select initial annealing level β_0 , rescale the input θ domain to $[0, 1]^d$.
- 2: Assign a call budget N, fix the hyperparameters N_{β} , R, dR.
- 3: for $i < N_{\beta}$ do
- 4: Estimate the normalizing flow density $q_i(\theta)$ from $\theta_1, ..., \theta_t$.
- 5: Fit the surrogate $s_i(\theta, \beta_i)$ from $f(\theta_1), ..., f(\theta_t)$ to annealed objective values.
- 6: Create proposal samples in $[0, 1]^d$ and in the latent space of q_t drawing from Gaussian spheres of radius R around the highest $DLO(\theta_j), j = 1...t$.
- 7: Locally maximize the acquisition function $DLO(\theta)$ from N_{sample} proposal draws to obtain the next batch of $\theta_{t+1}, .., \theta_{t+B}$ to evaluate.
- 8: Evaluate $f(\theta_{t+1}), ... f(\theta_{t+B})$ and update β_i .
- 9: end for

Local Exploration & Annealing Ablation

10-d Ackley and Correlated Gaussian

More targets: Ackley & CG (d=10)

10-d Ackley and Correlated Gaussian

DLO Strategy

