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Active Learning

Strategy for expensive functions:

1. Think very carefully about choosing a domain point
2. Evaluate the function at the top candidate point
3. Build upon success or learn from mistakes

lterate!
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Bayesian Optimization

Bayesian optimization (BO) is a strategy for global
optimization of expensive black-box functions

Local methods can fail on rugged
or multi-modal objectives

Spaces of moderate dimension
(d<100) ’ "



Bayesian Optimization

1. Surrogate model: s(6) - approximates the function
2. Acquisition function (AF): weights exploration vs
exploitation to select future points

Gaussian Processes (GPs) are
non-parametric interpolators
with uncertainty attached

Typically s(6) is a Gaussian
Process mean, and the AF
uses GP uncertainty

GpyOpt devs
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DLO - Acquisition Function

GP comes with a “natural” uncertainty for the AF

We instead use a density estimate for uncertainty inspired by
the deterministic Langevin equation:

Or+1 = 0y +ve = 0, + [5f(9t) + Vi (6:)(1)]e



DLO - Acquisition Function

GP comes with a “natural” uncertainty for the AF

We instead use a density estimate for uncertainty inspired by
the deterministic Langevin equation:

stochastic update
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DLO - Acquisition Function

GP comes with a “natural” uncertainty for the AF

We instead use a density estimate for uncertainty inspired by
the deterministic Langevin equation:

011 = 0; + ve = 0, + [5f(9t) + Vi (0:)(t)]e

Or1 = argmax|Sf(0) + V;(0)] = arg maxIn equ(ﬁg)(g))

Pr |
Formulate as optimization problem! q(0) = o~V (9)



DLO - Acquisition Function

GP comes with a “natural” uncertainty for the AF

We instead use a density estimate for uncertainty inspired by
the deterministic Langevin equation:

Ot 41 = 0; + ve = 0, + [6f(9t) + Vi (6:)(1)]e

011 = arg mgxx[ﬁl{{@* +|_Kt(9)] = arg max In exp (A (9)
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Normalizing Flows

NFs give a bijective map from a base distribution to a target
(Rezende & Mohamed 15, Papamarkios++19)

Fast sampling and evaluation of approximate density

J1(zo) f(z ~1) Jiv1(2:)
lterative (O} ®- & - (DN
Normalizing Flow A ﬁ AJ&

(Dai & Seljak 20) 20 ~ po(20) e o po(as) i o )

We use a Sliced

X

Flow-based Flow Inverse
generative models: x > > Z > f_l (2) X

minimize the negative f(x)
log-likelihood
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DLO - almost Bayesian Optimization

Next point —




Schematic Algorithm

The flow allows us to search for new points in latent space

Algorithm 1: Schematic Version

Evaluate f(6y) at initial points.
Assign call budget N, which sets the
annealing levels Ng.

for : < Ng do
Fit NF gy, to obtain unweighted sample density.

Fit surrogate ¢, to annealed objective values 3 logp(8).
Locally maximize the acquisition function AF(0)
Evaluate f(6;11) and update S.

end
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DLO Results: Test Functions

objective

Rastrigin & Rosenbrock objectives in 10d
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DLO Results: Test Functions

Rastrigin & Rosenbrock objectives in 10d
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DLO Results: Applied example

Cosmology application: -2o-

Luminous Red Galaxy
clustering

objective

11-d posterior
Inference problem

Also competitive for
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Choice of Surrogate

For lower-d, use GP, but DLO works with NNs

Runtime for GP becomes intractable with d

NN instead can save wall-clock time:

d 2 5 10 20 510
Evaluation:
DLO-GP | 0.02 | 0.03 | 0.07 | 0.15 6.07
DLO-NN | 0.02 | 0.02 | 0.04 | 0.10 0.53
Fitting:
DLO-GP | 0.17 | 0.26 | 0.44 | 1.71 | 46.65
DLO-NN | 0.03 | 0.04 | 0.06 | 0.20 2.84
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DLO Summary

NF density can replace GP uncertainty
Success on moderately high-dimensional targets

Other surrogates scale to higher d / larger datasets than GP
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Acquisition Functions

DLO

Upper Confidence
Bound

Expected Improvement

Thompson Sampling
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DLO as MCMC burn-in ...

DLO provides a good starting point
for sampling

100 importance-weighted samples
IS already qualitatively correct
in 10d

Corrected surrogate steps perform
even better on harder
problems
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Full Algorithm

Algorithm 1 Deterministic Langevin Optimization

1: Evaluate f(6,),.., f(fn,) at Ny initial points; select initial annealing level
By, rescale the input  domain to [0, 1]¢.
Assign a call budget N, fix the hyperparameters Ng, R, dR.
for i < Ng do
Estimate the normalizing flow density ¢;(#) from 64, .., 6;.
Fit the surrogate s;(6,3;)) from f(6;),..f(0:) to annealed objective
values.
6: Create proposal samples in [0, 1]* and in the latent space of ¢; drawing
from Gaussian spheres of radius R around the highest DLO(6,),5 = 1...t.
7: Locally maximize the acquisition function DLO(#) from Ngample pro-
posal draws to obtain the next batch of 6:,1,..,60;+ 5 to evaluate.
Evaluate f(6:+1),..f(6:+B) and update g;.
9: end for
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Local Exploration & Annealing Ablation

10-d Ackley and Correlated Gaussian
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More targets: Ackley & CG (d=10)

10-d Ackley and Correlated Gaussian
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DLO Strategy
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